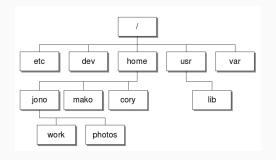
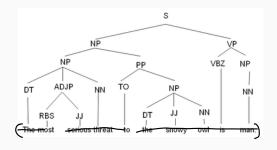
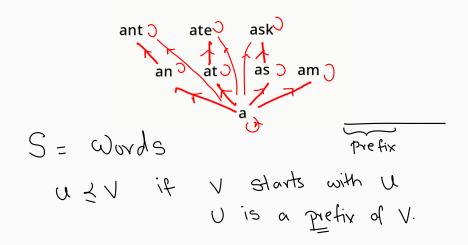
Games, graphs, and machines

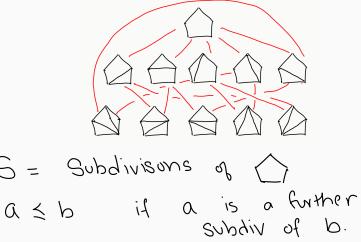
Partial orders


August 6, 2024

A partial order is


- 1. Reflexive
- 2. Anti-symmetric
- 3. Transitive


2. For
$$a \neq b$$
, cannot have $a \rightarrow b$ and $b \rightarrow a$


1

$$S = Directories$$
 on a computer $a \le b$ if a is contained in b

5

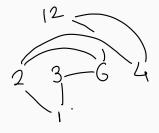
Paper, Scissors, Rock: Partial order?

- Paper \leq Scissors
- Scissors ≤ Rock
- Rock \leq Paper

Not transtive! Cannot make this anti sym & transitive.

S = Set of all planar of polygons $P \leq Q$ if $area(P) \leq area(Q)$. ? A total order <u>is</u> a partial order where any two are comparable. (1) Portial order (2) Total order ? Not V Not centisymmetric

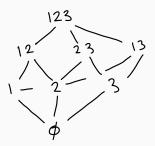
Some area


Some sea Portial ord (3) Not V Totalord

Divisor poset

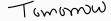
Let $S = \{1, 2, 3, 4, 6, 12\}$. Say $a \le b$ if a divides b.

What is the Hasse diagram?


Divisor posed of 12.
"Partially ordered set"

Subset poset

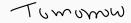
Let
$$S = Pow(\{1,2,3\})$$
.
Say $A \leq B$ if $A \subset B$. $= A \subseteq B$ of $\{1,2,3\}$.
What is the Hasse diagram?
 $\{1,2,3\}$.
 $\{2,3\}$. $\{1,2,3\}$.



Product poset

Let \leq be the usual order on \mathbb{R} . Define \preceq on $\mathbb{R} \times \mathbb{R}$ by

$$(a,b) \leq (c,d)$$
 if $a \leq b$ and $c \leq d$.


- 1. Give an example of two incomparable elements under \leq .
- 2. Plot all elements that are \leq (2,3).
- 3. Plot all elements (x, y) with $(1, 1) \leq (x, y) \leq (2, 3)$.

Max/min

In all the examples so far, identify

- the maximum (if it exists)
- the minimum (if it exists)
- all maximal elements
- all minimal elements

